A detailed method for preparation of a functional and flexible blood–brain barrier model using porcine brain endothelial cells☆

نویسندگان

  • Adjanie Patabendige
  • Robert A. Skinner
  • Louise Morgan
  • N. Joan Abbott
چکیده

The blood-brain barrier (BBB) is formed by the endothelial cells of cerebral microvessels and forms the critical interface regulating molecular flux between blood and brain. It contributes to homoeostasis of the microenvironment of the central nervous system and protection from pathogens and toxins. Key features of the BBB phenotype are presence of complex intercellular tight junctions giving a high transendothelial electrical resistance (TEER), and strongly polarised (apical:basal) localisation of transporters and receptors. In vitro BBB models have been developed from primary culture of brain endothelial cells of several mammalian species, but most require exposure to astrocytic factors to maintain the BBB phenotype. Other limitations include complicated procedures for isolation, poor yield and batch-to-batch variability. Some immortalised brain endothelial cell models have proved useful for transport studies but most lack certain BBB features and have low TEER. We have developed an in vitro BBB model using primary cultured porcine brain endothelial cells (PBECs) which is relatively simple to prepare, robust, and reliably gives high TEER (mean~800 Ω cm(2)); it also shows good functional expression of key tight junction proteins, transporters, receptors and enzymes. The model can be used either in monoculture, for studies of molecular flux including permeability screening, or in co-culture with astrocytes when certain specialised features (e.g. receptor-mediated transcytosis) need to be maximally expressed. It is also suitable for a range of studies of cell:cell interaction in normal physiology and in pathology. The method for isolating and growing the PBECs is given in detail to facilitate adoption of the model. This article is part of a Special Issue entitled Companion Paper.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P27: KCNK2 and Adhesion Molecules in an in-Vitro Blood Brain Barrier Model

Two-pore domain potassium channels, like KCNK2, are known to play an important role in inflammatory diseases such as multiple sclerosis (MS). Upregulation of cellular adhesion molecules in mouse brain microvascular endothelial cells (MBMECs) of Kcnk2-/- mice resulted in elevated leukocyte trafficking into the central nervous system under inflammatory conditions. The current project aims to gain...

متن کامل

P 150: The Role of Blood Brain Barrier Restoration in the Multiple Sclerosis

Blood Brain Barrier (BBB) is a specialized non fenestrate barrier that formation by the endothelial cells and controls the transportation of the cells and molecules in to the brain. Reducing in function of BBB is one of disruptions in neurological diseases like multiple sclerosis. Endothelial progenitor cell (EPC) help to the BBB to control the diapedesis of inflammatory cells & molecules in to...

متن کامل

P 61: MicroRNA as a Therapeutic Tool to Prevent Blood Brain Barrier Dysfunction in Neuroinflammation

Endothelial cells present in brain are unique and differ from other peripheral tissues in a number of ways, which ensures specific brain endothelial barrier properties. Endothelial dysfunction is the earliest event in the initiation of vascular damage caused by inflammation. Various microRNAs (miRNA) have been discovered in different cellular components of the blood bran barrier (BBB). miRNAs a...

متن کامل

Modulation of multidrug resistance protein expression in porcine brain capillary endothelial cells in vitro.

Multidrug resistance-associated protein (MRP) is a transport system that is involved in the elimination of xenobiotics and biologically active endogenous substrates. Recently, the presence of MRP has been demonstrated in cultured brain capillary endothelial cells (BCECs). The time-dependent, functional expression of MRP in porcine BCECs was investigated to assess the value of this cell culture ...

متن کامل

Relationship between dietary virgin Olive oil on brain Cholesterol, Cholesteryl ester and Triglyceride levels and Blood Brain Barrier (BBB) permeability in a rat stroke model

Introduction: Recent studies suggest that dietary virgin olive oil (VOO) reduces hypoxia-re oxygenation injury in rat brain. We have attempted to determine the effect of dietary virgin olive oil on brain lipidomics and its relationship with brain edema in a rat stroke model. Methods: Five groups, each consisting of 6 male Wistar rats, were studied. The first and second groups (control and s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 1521  شماره 

صفحات  -

تاریخ انتشار 2013